

In-situ growth of MoS₂ nanosheets layer on a low-cost flat ceramic substrate for efficient separation of dyes

Z C. Elidrissi^{a,b*}, B. Achiou^a, S. Rode^b, S.A. Younssi^a, B. Belaissaoui^b, M. Ouammou^a

^a Laboratory of Membranes, Materials and Environment, Faculty of Sciences and Technologies of Mohammedia BP 146, 20650, Hassan II University of Casablanca, Morocco ^b University of Lorraine, CNRS, LRGP, F-54000 Nancy, France ^{*}zakarya.chafiq-etu@etu.univh2c.ma

Abstract

Molybdenum disulfide (MoS₂), as a promising alternative 2D material, has become an alternative membrane material for water purification thanks to its interlayer nanochannels besides its excellent physicochemical properties [1]. This study presents a facile strategy for in situ-growth of MoS₂ layer on bentonite substrate. An intact MoS₂-based membrane was obtained in a hydrothermal growth process. The structure and properties of the prepared membrane were systematically investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and zeta potential measurement. The results indicated that MoS₂ could grow on the surface of bentonite substrate to improve both the permeablity and the selectivity. Due to its sieving effect of the MoS₂ aperture, the prepared MoS₂-based membrane shows high rejection for soluble dyes. Moreover, it exhibits outstanding filtration performances achieving a permeability (30.32 L·m⁻²h⁻¹bar⁻¹) and excellent rejection (>94%) for dyes. This approach demonstrated the great potential of MoS₂ membrane for dye separation.

Keywords: MoS₂ membrane; Hydrothermal; bentonite; dye separation.

Acknowledgments

The authors greatly acknowledge the financial support of funding from the Hubert Curien Program through the PHC TOUBKAL/23/166 Project.

References

[1] Y. Liu, Y. Zhao, X. Zhang, X. Huang, W. Liao, Y. Zhao, MoS₂-based membranes in water treatment and purification, Chemical Engineering Journal 422 (2021) 130082. https://doi.org/10.1016/j.cej.2021.130082.