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ABSTRACT 

This study evaluated two mathematical models to simulate ethanol production by microbial fermentation, aiming to produce 
liqueurs derived from Amazonian fruits (açaí and cupuaçu). The processes in both cases were carried out in a batch reactor, 
where the effect of substrate inhibition on ethanol production was evaluated. The method used for estimating the kinetic 
parameters of the process was Markov chain Monte Carlo with the Metropolis-Hastings algorithm. Metrics for comparing 
experimental measurements with estimated ones included the Bayesian information criterion (BIC), Akaike information criterion 
(AIC), and relative root mean square error (rRMSE). The results indicated that the model that included the maximum concentration 
of ethanol and substrate in the inhibition of the process, presented rRMSE values below 10%, demonstrating an excellent fit. 
These results indicate greater precision estimating the essential kinetic parameters to optimize ethanol production and ensures 
more accurate predictions of the process performance. 
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1 INTRODUCTION 

Ethanol production in Brazil is predominantly driven by sugarcane; however, there is a growing interest in exploring alternative 
biomass sources, such as lignocellulosic industrial residues and renewable raw materials. This diversification not only broadens 
the base for ethanol production but also contributes to the energy matrix diversification, reducing the exclusive dependence on 
sugarcane. Moreover, the utilization of lignocellulosic industrial residues fosters the circular economy and enables a more 
sustainable and efficient production process.1, 2 

The production of liqueurs derived from Amazonian fruit pulps represents a convergence of fermentation technology and the 
valorization of natural resources. This approach promotes the circular economy by utilizing fruit by-products and contributes to 
scientific advancement by providing insights into fermentation kinetics and sensory aspects. Furthermore, it enhances regional 
sustainability by integrating Amazonian biodiversity into the beverage industry both efficiently and scientifically.3, 4 

The literature5 has already investigated the kinetics of alcoholic beverages made with two Amazonian fruits: açaí (Euterpe 

precatoria) and cupuaçu (Theobroma grandiflorum). In the fermentation of cupuaçu liqueur, complex sugars favored ethanol 

production, delaying the inhibitory process. For açaí liqueur, obstacles such as rancidity due to high anthocyanin concentration 

were identified. In this context, the objective of this work was to evaluate two kinetic models for ethanol production by microbial 

fermentation from Amazonian fruits. For this purpose, the Markov chain Monte Carlo (MCMC) method with the Metropolis-Hastings 

algorithm was used to estimate the kinetic parameters of each model. The results of the estimates were compared with 

experimental measurements in the literature5, followed by calculations of the Bayesian information criterion (BIC), Akaike 

information criterion (AIC), and relative root mean square error (rRMSE) for the analysis and comparison of the studied models. 

2 MATERIAL & METHODS 

Table 1 presents the two models used in this work for alcoholic fermentation using Amazonian fruits (açaí and cupuaçu). Model 
A describes the kinetic modeling of the process based on the Monod kinetic model5, considering the behavior and reaction rates 
of sugars, biomass, and ethanol, as well as product inhibition by the microorganism, including the substrate inhibition constant. 
Model B describes the kinetic modeling of the ethanol production, process considering the inhibitory effect of the substrate6; 
additionally, it also includes cell growth based on Monod kinetics.6 The difference between the equations is that Model B considers 
a maximum concentration of ethanol at which the process is inhibited. For model A, the terms YX/S and YE/S are represented by 
Eqs. (1) and (2), respectively.5 

𝑌𝑋/𝑆 = 𝑚𝑋/𝑆𝑆𝑎 + 𝑏𝑋/𝑆 (1) 

𝑌𝐸/𝑋 = 𝑚𝐸/𝑋𝑆𝑎 + 𝑏𝐸/𝑋 (2) 
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Table 1 Kinetic models for the alcoholic fermentation process. 
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Description: From models A and B, the following parameters were estimated: µmax(h-1), which represents the maximum specific cell growth rate; Ki (g/L), the inhibition 
constant; KS (g/L), the saturation constant; KL (Lh/g), the lag phase constant; µ (h-1), the specific growth rate; YX/S (dimensionless), the interaction between biomass 
and substrate; YE/S (dimensionless), the interaction between ethanol and substrate; Pmax (g/L), the maximum product concentration at which cell growth begins to be 
inhibited; S (g/L), the substrate concentration; X (g/L), the biomass concentration; E (g/L), the ethanol concentration; γ (h-1), the kinetic constant of ethanol production; 
Sa (g/L), the sum of added sugars; n, a parameter related to product inhibition and t (h), time. For substrate consumption, mX represent the cell maintenance coefficient. 
In ethanol formation, α and β denote the product formation constants of the Luedeking-Piret equation associated and not associated with cell growth, respectively. 

The MCMC method was used to estimate the optimal process parameters. This statistical technique, based on Bayes Theorem7,10, 

is characterized by its effectiveness in obtaining significant sample estimates.7 The comparison between estimated and 

experimental measurements was carried out using objective metrics such as the Akaike Information Criterion and the Bayesian 

Information Criterion, which determine the most appropriate model considering both fit and complexity.8 Additionally, rRMSE was 

used to provide a direct evaluation of the model's fit quality to experimental data, regardless of the number of model parameters, 

complementing AIC and BIC-based analyses.9 

3 RESULTS & DISCUSSION 

Figure 1 shows the simulation results for biomass and ethanol production, as well as substrate consumption in terms of mean and 
99% credible interval (CI), compared to experimental measurements in the literature.5 

Figure 1 Comparison of estimated concentrations and experimental measurements by Mendoza (A)5 and Farias (B)6. 

A.    

B.  

In Figure 1, it is possible to observe that there was a good fit between the estimated concentrations and the experimental 

measurements. The stationary phase of microbial growth was reached at approximately 55 hours and the maximum substrate 

concentration is around 70 hours. In these cases, only model B presented a good fit to represent the stationary phase and 

substrate consumption, which is evident from the fit of the graph to the experimental data. Table 2 presents the estimated 

parameter values for each model. It is possible to observe that model A, with 𝜇 of 0.6 h⁻¹ and 𝐾𝑖 of 0.006 g/L, indicates rapid cell 

growth but low substrate sensitivity, which may limit performance at high substrate concentrations.11 Model B, with 𝜇𝑚𝑎𝑥 of 0.232 

h⁻¹, 𝐾𝑖 of 24.4 g/L, and 𝑃𝑚𝑎𝑥 of 56 g/L, is more tolerant to the substrate, proving to be robust and efficient for ethanol production 

even at high sugar concentrations.12 
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Table 2 Estimated parameters of models A and B. 

Model A Value Unit Model B Value Unit 

max  0.6 h-1 
max  0.232 h-1 

/X Sm  1.81 - 
SK  1.67 g/L 

/X Sb  0.04 - 
iK  24.4 g/L 

/E Xm  0.13 - 
maxP  56 g/L 

/E Xb  18.58 - 
xm  0.027 - 

  0.006 h-1 
xY  0.104 - 

SK  2.58 g/L   5.71 - 

iK  0.006 g/L   0.16 - 

LK  8.41 g/L n  4.5 - 

aS * 1.07 g/L    

 

Table 2 compares models A and B based on the analysis of cell, substrate, and product concentrations. Model B showed lower 
rRMSE, AIC, and BIC values for all state variables, indicating superior performance in predicting biomass production, product, 
and substrate consumption values. Although the metrics for model B presented smaller errors, model A also simulated the process 
satisfactorily and can be improved with future adjustments. 

Table 3 Comparison of AIC, BIC, and rRMSE values for models A and B. 

Model 
rRMSE (%) AIC BIC 

Cell Substate Product Cell Substate Product Cell Substate Product 

A 11.78 22.93 26.13 52.32 39.61 33.98 96.78 84.06 78.43 

B 5.20 7.89 5.55 10.49 -2.34 -0.79 23.39 10.56 12.11 

 

4 CONCLUSION 

In this study, two mathematical models were evaluated to represent the kinetics of alcoholic fermentation using Amazonian fruits. 

The results of the MCMC simulations and the selection metrics indicated that the model that considered inhibition by both the 

substrate and the product presented a superior fit, with an rRMSE of less than 10%, compared to the model that considered only 

substrate inhibition, demonstrating its ability to predict the essential parameters to optimize ethanol production. This precision is 

important to ensure efficiency and promote better predictions of process behavior. 
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