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ABSTRACT 

In this paper, a dataset was assembled containing 100 observations taken from the literature, correlating the immobilization 
parameters of the β-galactosidase enzyme with its optimum temperature, optimum pH and the Michaelis-Menten constant (Km). 
Three different models were used, including Random Forest, Ridge Regression, and Multiple Linear Regression, which were 
compared using the Coefficient of Determination (R2), Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Mean 
Square Error (RMSE). The Random Forest model seemed to perform the best, as it presented R2 values of 0.818, 0.781 and 
0.963 for the optimal temperature, optimal pH and Km, respectively. The MAE, MSE and RMSE values also indicate that it is 
possible to use this model to predict experimental data. However, an extension of the dataset and a possible tuning of 
hyperparameters are necessary to improve the predictive capacity of the algorithm. 
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1 INTRODUCTION 

β-galactosidase is an enzyme belonging to the hydrolase class, and therefore, can convert lactose into glucose and galactose. 
This means that this biocatalyst has several applications, mainly in the food industry, for supplementation for people who are 
lactose intolerant, and dessert fabrication. The literature studies1 have also shown that it is possible to use the enzyme to produce 
sugars such as lactulose (which contains prebiotic properties), aggregating even more industrial value to it. 

Unfortunately, this soluble biocatalyst also has some disadvantages, such as low thermal, operational and storage stability. 
Therefore, enzyme immobilization appears as an interesting alternative to overcome these difficulties, but it is also necessary to 
pay attention to some immobilization parameters2, such as: pH, enzyme concentration, the temperature at which the procedure 
is carried out, immobilization time, etc. Consequently, dependent variables such as the optimum temperature, optimum pH and 
the Michaelis-Menten constant (Km) can be used to measure whether the process has been successful and whether it is 
applicable. However, conducting experimental studies on enzyme immobilization is a complex, costly and time-consuming 
process. On the other hand, modeling techniques can be employed to accelerate the process, allowing the identification of patterns 
and the selection of the most critical variables. These methods offer an efficient and effective alternative to traditional experimental 
approaches 

Machine learning algorithms and models, for instance, can be very useful for discovering relationships and the impact of variables 
on prediction accuracy in various scientific areas, as has already been demonstrated by other authors.3 On that account, the 
objective of this work is to compare the predictive performance of three different machine learning models (Random Forest, Ridge 
Regression and Multiple Linear Regression, respectively), using a dataset consisting of 50 observations extracted from the 
literature to predict the optimal temperature, optimal pH and Michaelis-Menten constant.  

2 MATERIAL & METHODS 

The dataset used in this study has 100 observations, and was assembled from data extracted from scientific literature from sources 
such as Scopus, PubMed and Google Scholar. The input variables to be analyzed by the three models were: the immobilization 
method, buffer ionic strength, buffer’s ion, enzyme source, concentration of the enzymatic solution, pH of the medium, 
immobilization temperature and immobilization time. The ambient temperature was considered to be 25 °C and the overnight time 
was 12 hours, as this is the most reported time for enzymatic immobilization. The output variables were temperature optimum, pH 
optimum and Km. K-fold Cross Validation4 and Grid Search4 were used in order to better train the models and search for the better 
parameters of each one. In addition, all the data was normalized, since there were different ranges between the variables.  

It is worth noting that algorithms were coded in Phyton for the Random Forest3, Ridge5 and Multiple Linear Regression5 models, 
with the best one being chosen according to the values of the coefficient of determination (R2), mean absolute error (MAE), mean 
squared error (MSE) and root mean squared error (RMSE). All the independent variables were used during the test. 
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3 RESULTS & DISCUSSION 

The tables indicating the metrics for all the models were shown, whereas the scatter plot or the best model was displayed. As can 
be observed, the Random Forest model presented, on average, the best results, because, it had a best coefficient of determination 
(R2) when compared to the Ridge Regression and Multiple Linear Regression. The values of MAE, MSE, and, consequently, 
RMSE indicate that there is greater proximity between the predicted values and those obtained experimentally. It is also possible 
to state that the Multiple Linear Regression model failed to capture the complexity of the relationships between the variables, 
which is expected, since this model assumes a linear relationship between inputs and outputs, which does not seem to be the 
case. 

Table 1 Table for temperature optimum (all models) 

Indicator Random Forest Ridge Regression Multiple Linear Regression 

R2 0.852 0.306 0.250 
MAE (°C) 2.828 7.002 7.247 
MSE (°C2) 14.990 70.403 76.087 
RMSE (°C) 3.872 8.391 8.723 

 

 

 

Figure 1 Scatter plot for temperature optimum (°C) (Random Forest model) 

The same seems to be valid for the optimum pH, as the Random Forest appears to be the model that captures the best relationship 
of the dataset. This seems to be due to the fact that many independent decision trees are created, before the average result of 
prediction is taken, which helps to understand how this model could be useful in solving biotechnology practical obstacles.  

Table 2 Table for pH optimum (all models) 

Indicator Random Forest Ridge Regression Multiple Linear Regression 

R2 0.845 0.530 0.471 
MAE  0.392 0.720 0.738 
MSE  0.255 0.767 0.868 

RMSE  0.505 0.876 0.932 

 

 

Figure 2 Scatter plot for pH optimum (Random Forest model) 
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The Michaelis-Menten constant, at last, follows the same trend, but the Random Forest had the best performance, followed by 
the Ridge Model and the Multiple Linear Regression model. This is probably due to the fact that the average of the trees fit the 
data better. However, it is still necessary to increase the number of rows of the dataset, and consequently to check if the model 
is not tending to overfit. The predictions values could be more trustworthy regarding the experimental ones. 

 

Table 3 Table for Michaelis-Menten constant (all models) 

Indicator Random Forest Ridge Regression Multiple Linear Regression 

R2 0.981 0.120 0.074 
MAE (mM) 4.055 31.538 34.684 
MSE (mM2) 45.412 2157.077 2266.526 
RMSE (mM) 6.739 46.444 47.608 

 

 

Figure 3 Scatter plot for Michaelis-Menten constant (Random Forest model) 

4 CONCLUSION 

In conclusion, a reliable predictive model can be obtained using supervised machine learning techniques to correlate β-
galactosidase immobilization parameters in a given dataset. The results are within the expected margin of experimental error, 
which indicates that such models can be helpful in practical applications. However, to improve the accuracy and dependability, it 
is essential to collect more data and identify the other significant variables that can be incorporated into the analysis. Overall, this 
study provides valuable insights into the potential of machine learning techniques in predicting the behavior of β-galactosidase 
immobilization, which could have implications for several industrial and scientific applications. 
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