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Deep learning study for the photodegradation of a binary mixture in a 
heterogeneous catalyst of copper oxide nanoparticles supported onto 
nanozeolite 
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  The present work aims to synthesize and characterize an eco-

friendly supported nanocatalyst (nSOD@CuO-NPs) for application 

in the photodegradation of a dye binary mixture of crystal violet 

(CV) and methylene blue (MB) and to perform deep learning 

predictions. nSOD@CuO-NPs showed a mesoporous strucuture 

with analcime, sodalite, cuprite, and tenorite crystalline phases, ZP 

= -18.5 ± 4.30 mV, Eg = 1.67 eV, SBET = 15 m2 g–1. 78.8% 

degradation (k = 0.0011 min-1) for CV and 80.9% (k = 0.0013 min-

1) for MB were achieved under pH 6.71, T = 25 ± 2 °C, 

[nSOD@CuO-NPs] = 1.0 g L–1, and [Dye mix.] = 135 mg L–1 after 

180 min. The deep learning model showed high performance and 

reported that dye wavelength, dye mix. and catalyst concentration, 

time, and pH strongly affected the neural network‘s prediction 

ability. Therefore, the nanocatalyst shows promising photocatalytic 

activity, whereas the deep learning demonstrated to be a suitable 

tool for performing predictions about the progress of chemical 

reactions associated with AOPs. 

Introduction 

Annually, around 50.000 tons of synthetic organic 

dyes are produced and discharged in wastewater [1]. 

These organic dyes are hydrophilic, chemically and 

thermally stable, resistant to physio-chemical and 

biological wastewater treatment and a pose serious 

threat to aquatic animals and the environment. 

Heterogeneous photocatalysis using supported 

nanocatalysts (e.g. copper oxide nanoparticles 

supported onto nanozeolites, such as nSOD@CuO-

NPs) has attracted many researchers due to the 

efficiency in degradation of organic dyes, with the 

generation of highly reactive oxygen species (i.e., 

HO● e and O2
–●) which react non-selectively with the 

organic matter mineralizing them [2]. Copper oxide 

nanoparticles (CuO-NPs) show low toxicity, band 

gap energy (Eg) ranging from 1.2 - 1.7 eV, and can 

be produced from green synthesis [3]. However, the 

experimental runs can be time and cost-consuming, 

requiring computational tools such as deep learning 

to perform predictions about the process and to 

address the main important variables of the 

wastewater treatment. Thus, the present work aims 

to verify the suitability of deep learning using a 

multilayer perceptron artificial neural network (MLP-

ANN) in the prediction of the degradation reaction 

progress in and beyond the experimental range to 

get insight into the catalytic activity. 
 

Material and Methods 

1. Synthesis of the heterogeneous supported 

catalyst: Nanozeolite sodalite (nSOD) was 

synthesized by hydrothermal method (180 ± 2 °C / 6 

hours / 5 C° min–1) from rice husk and aluminum 

waste as raw material [4]. CuO-NPs were 

synthesized by biosynthesis, followed by calcination 

(450 ± 2 °C / 6 hours) [5]. nSOD@CuO-NPs was 

prepared by impregnation method [6], where the 

catalytic support (nSOD) was mixed with 2.5 wt.% of 

the photoactive phase (CuO-NPs) under magnetic 

stirring (100 rpm / 90 min). After, the sample was 

dried (80 ± 2 °C) for 3 hours and calcined (450 ± 2 °C 

for 4 hours). 
 

2. Characterization: The samples were analized by 

X-ray diffraction (XRD); Attenuated Total 

Reflectance-Fourier Transform Infrared (ATR-FTIR) 

spectroscopy; N2 porosimetry; Zeta Potential (ZP); 

Zero Charge Point (pHZCP), Difuse Reflectance 

Spectroscopy (DRS) and Energy Dispersive X-ray 

Analysis (EDX). 
 

3. Photocatalytic Activity and Kinetic Study: The 

photocatalytic activity tests were carried out in batch 

system using CV with MB dyes (135 mg.L-1, pH 6.71) 

(as a target molecules) and the catalyst in 

suspension (1 g.L-1) in a slurry reactor under visible 

irradiation (Bulb LED Lamp with 600 W m-2) in two 

steps: (a) in dark condition: adsorption of the dyes 

mixture molecules onto the catalytic surface without 

irradiation (60 min), and (b) photocatalytic 

degradation of the CV:MB: under visible radiation, 

aliquots (~2 mL) were collected at time 0, 15, 30, 45, 

60, 75, 90, 105, 120, 150 and 180 min, centrifuged 

(3500 rpm / 5 min) and diluted (1:10 v v-1). The 

absorbance was determined by UV-Vis 

spectrophotometer (λ = 590 nm for the CV, and λ = 

663 nm for the MB). The kinetic rate constant was 
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determined using the Langmuir-Hinshelwood model, 

according to Eq. (1) [7]. 
 

𝐶𝑖 = 𝐶𝑖0 ∗ 𝑒
−𝑘∗𝑡 (1) 

 

4. Deep Learning Study: To evaluate the progress 

of the photodegradation reaction and to predict the 

degradation percentage (%R) at times higher than 

the experimental set (t > 180 min, e.g., 200 - 300 

min) a multilayer perceptron regression artificial 

neural network (MPL–ANN) algorithm was used [8]. 

The permutation importance (PIMP) method was 

carried out to identify the variable that affects the 

degradation percentage (%R) and hence the model 

prediction ability.
 

 

Results and Discussion 

Figures 1(a) - 1(b) show the XRD diffractograms and 

ATR-FTIR spectra, respectively, of the catalytic 

support, photoactive phase and supported catalyst 
 

  

                             (a)                                  (b) 

Figure1. XRD diffractograms and ATR-FTIR spectra of 

nSOD, CuO-NPs, and nSOD@CuO- NPs. 
 

 

The diffractograms showed that the nSOD@CuO-

NPs showed the catalytic support crystallite phases 

(analcime and sodalite) and of the crystallite phases 

of photoactive phase (cuprite and tenorite), with 

crystallite size ranging from 29.09 to 50.54 nm. The 

ATR-FTIR spectra identified the stretching and 

bending vibrations characteristic of zeolite were in 

both nNSOD and SOD@CuO-NPs. N2 porosimetry 

revealed that all samples were mesoporous (2 < Dp 

< 50 nm) with a pore diameter between 12.9 and 

37.1 nm. nSOD, CuO-NPs and nSOD@CuO-NPs 

showed a surface area of the 2, 14 and 15 m² g-1, 

respectively, Thus, there was an increase of the 

surface area of the nSOD@CuO-NPs due to the 

incorporation of the photoactive phase (CuO-NPs) 

onto the catalytic support (nSOD). The pore volume 

reduced from 0.05 cm3 g–1 to 0.004 cm3 g–1. 

nSOD@CuO-NPs showed zero-charge point (pHPZC) 

of 7.46 and ZP = –18.5 ± 4.3 mV. EDX analysis 

reported the following elemental composition for the 

nSOD@CuO-NPs: Cu (0.49 wt.%), Na (2.99 wt.%), 

Al (3.99 wt.%), Si (5.44 wty.%), and O (43.37 wt.%). 

DRS spectra informed the band gap energy of the 

2.22 eV (CuO-NPs), 1.65 eV (nSOD), and 1.67 eV 

(nSOD@CuO-NPs). The apparent rate of the 

pseudo first-order reaction from the ideal condition 

by CCRD 2³ , 0.0011 min–1 (CV dye), and 0.0013 

min–1 (MB dye), whereas the %R was 78.8% for CV, 

and 80.9% for MB, after 180 min (pH 6.71, T = 25 ± 

2 °C, [nSOD@CuO-NPs] = 1.0 g L–1, and [Dye mix.] 

= 135 mg L–1). Table 1 shows the prediction carried 

out using MLP-ANN algorithm in the deep learning 

study. 
 

Table 1. Predictionsa carried out with MLP-ANN algorithm.b 

Time (min) Ypred Yobs Error 

180 0.168 0.139 3% 

240 0.127 0.115 1% 

300 0.089 0.035 5% 
a Predictions performed for MB dye degradation. 
b Activation function: ReLU | weight uptdating function: 

AdamW | initial learning rate of 0.1% | neural network: 
5:15:15:1 (5 inputs, 2 hidden layers with 15 neurons each, 

and 1 response). | R2 of 0.87 and RMSE of 0.067. 
 

Thus, PIMP score reveleaded that that 

characteristics of wavelength, dye mixture 

concentration, catalyst concentration, time, and pH 

affect the neural networks‘ prediction ability and 

hence, the degradation percentage (%R).

 

 

Conclusions 

nSOD@CuO-NPs showed good photocatalytic activity (~80 % dye degradation) with suitable application in the 

degradation of persistent organic pollutants under visible light. The deep learning algorithm showed to be a 

promising and suitable tool for performing predictions about the progress of chemical reactions associated to 

advanced wastewater treatments, and for identifying the variables that affect the most the degradation 

reaction. The artificial neural networks (e.g., multilayer percepetron regressors) can be sucessfuly used to 

predict the progress of chemical reactions involved in photocatalytic degradation processes and for 

optimization purposes, being characterized as a good starting point for scale-up studies perfoming.
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